
TOPICS IN STATISTICAL PHYSICS AND PROBABILITY THEORY

HOMEWORK SHEET 1

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by April 25 to the instructor in class.

(i) Denote the entropy function H : [0, 1]→ [0,∞) by

H(x) := −x log x− (1− x) log(1− x), (1)

where the logarithms are in base e. Prove that for any integers n > k > 0,
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Hint: Instead of resorting to Stirling’s approximation, a neat proof is obtained by consid-
ering the binomial distribution Bin

(
n, kn

)
.

(ii) (Curie-Weiss model) Let β > 0 and h ∈ R. Recall the limiting rate function for the
magnetization density in the Curie-Weiss model, the function ϕβ,h : [−1, 1]→ R defined by

ϕβ,h(m) :=
1

2
βm2 + hm+H

(
1 +m

2

)
,

where H is given in (1).
(a) Prove that ϕβ,h attains its global maximum at a unique point m∗ ∈ [−1, 1] in the case

that β 6 1 or h 6= 0. In addition, show that m∗ = 0 when β 6 1 and h = 0.
(b) Prove that ϕβ,h attains its global maximum at exactly two points ±m∗ with m∗ ∈ (0, 1]

when β > 1 and h = 0. In addition, show that

lim
β↓1

m∗√
3(β − 1)

= 1

Remark: The exponent 1
2 of β − 1 is called a critical exponent as it measures how the

magnetization density behaves in the vicinity of the critical point.

(iii) (One-dimensional Ising model). Let n > 2 and f : {1, 2, . . . , n} → {−1, 1} be a random
function sampled according to the one-dimensional Ising model at inverse temperature
β > 0 and magnetic field h ∈ R. That is,

P(f) =
1

Zβ,h,n
exp

(
β

n−1∑
i=1

f(i)f(i+ 1) + h

n∑
i=1

f(i)

)
,

where Zβ,h,n is the partition function (which normalizes the above expression to be a
probability measure).
(a) Prove that there exist c1(β, h), c2(β, h), analytic functions on β > 0, h ∈ R, so that

Zβ,h,n = c1(β, h)λn+ + c2(β, h)λn−

with

λ± = eβ cosh(h)±
√
e2β cosh2(h)− 2 sinh(2β).

Conclude that

lim
n→∞

1

n
log(Zβ,h,n) = log(λ+). (2)

Remark: The limit on the left-hand side of (2) is called the pressure of the model.
Hint: One can use a transfer matrix approach (an approach related to linear recursion
relations or Markov chain theory): relate Z to the n’th power of certain 2× 2 matrix.
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(b) Observe that the magnetization density satisfies

E

(
1

n

n∑
i=1

f(i)

)
=

1

n
· d
dh

log(Zb,h,n)

and deduce that the limiting magnetization density,

lim
n→∞

E

(
1

n

n∑
i=1

f(i)

)
exists and is an analytic function of β, h in the entire regime β > 0, h ∈ R. In other
words, there is no spontaneous magnetization in the one-dimensional Ising model.

(c) Another manifestation of the lack of spontaneous magnetization is the fact that

lim
n→∞

E

 1

n2

(
n∑
i=1

f(i)

)2
 = 0 when h = 0, for all β > 0.

Deduce this from part (a) by first showing that

Var

(
1

n
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f(i)

)
=

1

n2
· d

2

dh2
log(Zb,h,n) for all β > 0, h ∈ R.

(iv) (Star-triangle (Yang-Baxter) transformation). Consider a ferromagnetic Ising model on a
general finite graph G = (V (G), E(G)) at inverse temperature β > 0 and zero magnetic
field. Precisely, the probability of each configuration f : V (G)→ {−1, 1} is given by

P(f) =
1

Zβ,G
exp

β ∑
{u,v}∈E(G)

f(u)f(v)

 .

Suppose that v0 ∈ V (G) has degree 3 and denote its neighbors by u1, u2, u3 ∈ V (G).
Denote by g the restriction of the function f to the vertex set V (G) \ {v0}. Prove that the
(marginal) distribution of g is given by

P(g) =
1

Z ′β,G
exp

β ∑
{u,v}∈E′(G)

g(u)g(v) + γ (g(u2)g(u3) + g(u1)g(u3) + g(u1)g(u2))


for some Z ′β,G, where E′(G) = E(G) \ {{u1, v0}, {u2, v0}, {u3, v0}} and

γ :=
1

4
log
(
e2β + e−2β − 1

)
. (3)

In other words, the restriction of f to V (G) \ {v0} is still an Ising model, on the graph G
with vertex v0 and its three adjoining edges (forming a ‘star’) removed and with a ‘triangle’
of edges added on the neighbors of v0, on which the coupling constant is changed from β
to γ.
Remark: A similar procedure applies when each edge e is given its own coupling constant
βe > 0. In particular, suppose we start with an Ising model at inverse temperature β > 0
on a piece of the hexagonal lattice. By restricting the model to one bipartition class of the
lattice we may obtain an Ising model at inverse temperature γ given by (3) on a piece of
the triangular lattice.

(v) (Connectivity of boundaries following Timár 2013. This is an optional exercise).
Definitions: A graph is locally finite if all degrees are finite. A graph is even if the degrees
of all its vertices are even. The cycle space of a graph G = (V,E) is the vector space over
F2 of all spanning even subgraphs of G (regarded as vectors in {0, 1}E). A separating set
is a set of edges Π ⊂ E for which there exist two vertices x, y ∈ V such that every path
between x and y intersects Π. A separating set is said to be minimal if it is minimal with
respect to inclusion.

Let G = (V,E) be a locally finite connected graph, let Π be a minimal separating set in
G and let C be a set of cycles in G which generate the cycle space of G (every cycle can be
written as a linear combination over F2 of the cycles in C).
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(a) Show that Π splits G into two components, i.e., that the graph (V,E \Π) has exactly
two connected components.

(b) Let {Π1,Π2} be a non-trivial partition of Π. Show that there exists a cycle c ∈ C
which intersects both Π1 and Π2. (Hint: find two paths P1 and P2 between some x
and y, such that Pi does not intersect Πi, decompose their sum in the cycle space, and
use parity considerations).

(c) Let A ⊂ V be such that both A and V \ A are non-empty and connected. Show that
the edge boundary ∂A := {{u, v} ∈ E : u ∈ A, v /∈ A} of A is a minimal separating
set.

(d) Let G∗ = (V,E∗) be a locally finite graph on the same vertex set as G and assume
that every element in C is a clique in G∗. Denote the internal vertex boundary of a
set A ⊂ V (in the graph G) by

∂inA :=
{
u ∈ A : {u, v} ∈ E for some v ∈ V \A

}
.

Show that if both A and V \A are connected in G, then ∂inA is connected in G∗. (Hint:
assume that the vertex boundary is not connected and construct from it a non-trivial
partition of the edge boundary).

(e) Deduce the claim stated in class for Zd. Namely, if A ⊂ Zd is a finite connected set
such that Ac is connected, then ∂inA is connected in the graph (Zd)� obtained from
Zd by adding edges of the form {x, x± ei± ej}, where x ∈ Zd and 1 6 i < j 6 d. (The
main issue here is proving that the set of basic 4-cycles generates the cycle space of
Zd).


