TOPICS IN STATISTICAL PHYSICS AND PROBABILITY THEORY HOMEWORK SHEET 1

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by April 25 to the instructor in class.

(i) Denote the entropy function $H:[0,1] \rightarrow[0, \infty)$ by

$$
\begin{equation*}
H(x):=-x \log x-(1-x) \log (1-x), \tag{1}
\end{equation*}
$$

where the logarithms are in base e. Prove that for any integers $n \geqslant k \geqslant 0$,

$$
\frac{1}{n+1} e^{n H\left(\frac{k}{n}\right)} \leqslant\binom{ n}{k} \leqslant e^{n H\left(\frac{k}{n}\right)}
$$

Hint: Instead of resorting to Stirling's approximation, a neat proof is obtained by considering the binomial distribution $\operatorname{Bin}\left(n, \frac{k}{n}\right)$.
(ii) (Curie-Weiss model) Let $\beta \geqslant 0$ and $h \in \mathbb{R}$. Recall the limiting rate function for the magnetization density in the Curie-Weiss model, the function $\varphi_{\beta, h}:[-1,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{\beta, h}(m):=\frac{1}{2} \beta m^{2}+h m+H\left(\frac{1+m}{2}\right),
$$

where H is given in (1).
(a) Prove that $\varphi_{\beta, h}$ attains its global maximum at a unique point $m^{*} \in[-1,1]$ in the case that $\beta \leqslant 1$ or $h \neq 0$. In addition, show that $m^{*}=0$ when $\beta \leqslant 1$ and $h=0$.
(b) Prove that $\varphi_{\beta, h}$ attains its global maximum at exactly two points $\pm m^{*}$ with $m^{*} \in(0,1]$ when $\beta>1$ and $h=0$. In addition, show that

$$
\lim _{\beta \downarrow 1} \frac{m^{*}}{\sqrt{3(\beta-1)}}=1
$$

Remark: The exponent $\frac{1}{2}$ of $\beta-1$ is called a critical exponent as it measures how the magnetization density behaves in the vicinity of the critical point.
(iii) (One-dimensional Ising model). Let $n \geqslant 2$ and $f:\{1,2, \ldots, n\} \rightarrow\{-1,1\}$ be a random function sampled according to the one-dimensional Ising model at inverse temperature $\beta>0$ and magnetic field $h \in \mathbb{R}$. That is,

$$
\mathbb{P}(f)=\frac{1}{Z_{\beta, h, n}} \exp \left(\beta \sum_{i=1}^{n-1} f(i) f(i+1)+h \sum_{i=1}^{n} f(i)\right)
$$

where $Z_{\beta, h, n}$ is the partition function (which normalizes the above expression to be a probability measure).
(a) Prove that there exist $c_{1}(\beta, h), c_{2}(\beta, h)$, analytic functions on $\beta>0, h \in \mathbb{R}$, so that

$$
Z_{\beta, h, n}=c_{1}(\beta, h) \lambda_{+}^{n}+c_{2}(\beta, h) \lambda_{-}^{n}
$$

with

$$
\lambda_{ \pm}=e^{\beta} \cosh (h) \pm \sqrt{e^{2 \beta} \cosh ^{2}(h)-2 \sinh (2 \beta)} .
$$

Conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(Z_{\beta, h, n}\right)=\log \left(\lambda_{+}\right) . \tag{2}
\end{equation*}
$$

Remark: The limit on the left-hand side of (2) is called the pressure of the model. Hint: One can use a transfer matrix approach (an approach related to linear recursion relations or Markov chain theory): relate Z to the n 'th power of certain 2×2 matrix.
(b) Observe that the magnetization density satisfies

$$
\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} f(i)\right)=\frac{1}{n} \cdot \frac{d}{d h} \log \left(Z_{b, h, n}\right)
$$

and deduce that the limiting magnetization density,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} f(i)\right)
$$

exists and is an analytic function of β, h in the entire regime $\beta>0, h \in \mathbb{R}$. In other words, there is no spontaneous magnetization in the one-dimensional Ising model.
(c) Another manifestation of the lack of spontaneous magnetization is the fact that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{1}{n^{2}}\left(\sum_{i=1}^{n} f(i)\right)^{2}\right)=0 \quad \text { when } h=0, \text { for all } \beta \geqslant 0 .
$$

Deduce this from part (a) by first showing that

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} f(i)\right)=\frac{1}{n^{2}} \cdot \frac{d^{2}}{d h^{2}} \log \left(Z_{b, h, n}\right) \quad \text { for all } \beta>0, h \in \mathbb{R} .
$$

(iv) (Star-triangle (Yang-Baxter) transformation). Consider a ferromagnetic Ising model on a general finite graph $G=(V(G), E(G))$ at inverse temperature $\beta \geqslant 0$ and zero magnetic field. Precisely, the probability of each configuration $f: V(G) \rightarrow\{-1,1\}$ is given by

$$
\mathbb{P}(f)=\frac{1}{Z_{\beta, G}} \exp \left(\beta \sum_{\{u, v\} \in E(G)} f(u) f(v)\right) .
$$

Suppose that $v_{0} \in V(G)$ has degree 3 and denote its neighbors by $u_{1}, u_{2}, u_{3} \in V(G)$. Denote by g the restriction of the function f to the vertex set $V(G) \backslash\left\{v_{0}\right\}$. Prove that the (marginal) distribution of g is given by
$\mathbb{P}(g)=\frac{1}{Z_{\beta, G}^{\prime}} \exp \left(\beta \sum_{\{u, v\} \in E^{\prime}(G)} g(u) g(v)+\gamma\left(g\left(u_{2}\right) g\left(u_{3}\right)+g\left(u_{1}\right) g\left(u_{3}\right)+g\left(u_{1}\right) g\left(u_{2}\right)\right)\right)$
for some $Z_{\beta, G}^{\prime}$, where $E^{\prime}(G)=E(G) \backslash\left\{\left\{u_{1}, v_{0}\right\},\left\{u_{2}, v_{0}\right\},\left\{u_{3}, v_{0}\right\}\right\}$ and

$$
\begin{equation*}
\gamma:=\frac{1}{4} \log \left(e^{2 \beta}+e^{-2 \beta}-1\right) . \tag{3}
\end{equation*}
$$

In other words, the restriction of f to $V(G) \backslash\left\{v_{0}\right\}$ is still an Ising model, on the graph G with vertex v_{0} and its three adjoining edges (forming a 'star') removed and with a 'triangle' of edges added on the neighbors of v_{0}, on which the coupling constant is changed from β to γ.
Remark: A similar procedure applies when each edge e is given its own coupling constant $\beta_{e} \geqslant 0$. In particular, suppose we start with an Ising model at inverse temperature $\beta \geqslant 0$ on a piece of the hexagonal lattice. By restricting the model to one bipartition class of the lattice we may obtain an Ising model at inverse temperature γ given by (3) on a piece of the triangular lattice.
(v) (Connectivity of boundaries following Timár 2013. This is an optional exercise).

Definitions: A graph is locally finite if all degrees are finite. A graph is even if the degrees of all its vertices are even. The cycle space of a graph $G=(V, E)$ is the vector space over \mathbb{F}_{2} of all spanning even subgraphs of G (regarded as vectors in $\{0,1\}^{E}$). A separating set is a set of edges $\Pi \subset E$ for which there exist two vertices $x, y \in V$ such that every path between x and y intersects Π. A separating set is said to be minimal if it is minimal with respect to inclusion.

Let $G=(V, E)$ be a locally finite connected graph, let Π be a minimal separating set in G and let \mathcal{C} be a set of cycles in G which generate the cycle space of G (every cycle can be written as a linear combination over \mathbb{F}_{2} of the cycles in \mathcal{C}).
(a) Show that Π splits G into two components, i.e., that the graph ($V, E \backslash \Pi$) has exactly two connected components.
(b) Let $\left\{\Pi_{1}, \Pi_{2}\right\}$ be a non-trivial partition of Π. Show that there exists a cycle $c \in \mathcal{C}$ which intersects both Π_{1} and Π_{2}. (Hint: find two paths P_{1} and P_{2} between some x and y, such that P_{i} does not intersect Π_{i}, decompose their sum in the cycle space, and use parity considerations).
(c) Let $A \subset V$ be such that both A and $V \backslash A$ are non-empty and connected. Show that the edge boundary $\partial A:=\{\{u, v\} \in E: u \in A, v \notin A\}$ of A is a minimal separating set.
(d) Let $G^{*}=\left(V, E^{*}\right)$ be a locally finite graph on the same vertex set as G and assume that every element in \mathcal{C} is a clique in G^{*}. Denote the internal vertex boundary of a set $A \subset V$ (in the graph G) by

$$
\partial_{\text {in }} A:=\{u \in A:\{u, v\} \in E \text { for some } v \in V \backslash A\} .
$$

Show that if both A and $V \backslash A$ are connected in G, then $\partial_{\text {in }} A$ is connected in G^{*}. (Hint: assume that the vertex boundary is not connected and construct from it a non-trivial partition of the edge boundary).
(e) Deduce the claim stated in class for \mathbb{Z}^{d}. Namely, if $A \subset \mathbb{Z}^{d}$ is a finite connected set such that A^{c} is connected, then $\partial_{\text {in }} A$ is connected in the graph $\left(\mathbb{Z}^{d}\right)^{\boxtimes}$ obtained from \mathbb{Z}^{d} by adding edges of the form $\left\{x, x \pm e_{i} \pm e_{j}\right\}$, where $x \in \mathbb{Z}^{d}$ and $1 \leqslant i<j \leqslant d$. (The main issue here is proving that the set of basic 4 -cycles generates the cycle space of \mathbb{Z}^{d}).

